蔵書情報
この資料の蔵書に関する統計情報です。現在の所蔵数 在庫数 予約数などを確認できます。
書誌情報サマリ
書名 |
西遊抄
|
著者名 |
安倍能成/著
|
出版者 |
小山書店
|
出版年月 |
1944 |
請求記号 |
#492/00113/ |
この資料に対する操作
カートに入れる を押すと この資料を 予約する候補として予約カートに追加します。
いますぐ予約する を押すと 認証後この資料をすぐに予約します。
※この書誌は予約できません。
資料情報
各蔵書資料に関する詳細情報です。
No. |
所蔵館 |
資料番号 |
資料種別 |
配架場所 |
別置 |
帯出 |
状態 |
1 |
鶴舞 | 2011024367 | 旧版和書 | 2階書庫 | | 禁帯出 | 在庫 |
関連資料
この資料に関連する資料を 同じ著者 出版年 分類 件名 受賞などの切り口でご紹介します。
要旨 |
昨今の数学の著しい特長は、個々の分野の閉鎖的な壁が崩壊し、複数の分野が思いもよらない結びつきをすることである。組合せ論の分野においても、この特徴は顕著に現れており、可換代数や代数幾何の武器を用いる手法などが盛んに研究されている。本著は、そのような組合せの斬新な特質を学ぶための、待望の入門書である。本著では、必要な予備知識を最小限にとどめ、初学者には馴染み難い可換代数の一般論を展開することを極力避け、可換代数のどのような結果がいかなる技巧を経由して組合せ論に適用されるのか、に力点をおいた解説がなされている。本著を通じて読者は、離散的な数学現象の研究において、抽象代数の現代的理論が発揮する威力を堪能することができる。巻末には全ての演習問題のためのヒントや略解が添付され、独習書として使いやすいように配慮がなされている。 |
目次 |
序章 ハーバード・スクエアの昼下がり 第1章 凸多面体と単体的複体(凸多面体と面 単体的複体と半順序集合 ほか) 第2章 Cohen‐Macaulay環(次数付可換代数 Hilbert函数とHilbert級数 ほか) 第3章 単体的球面と上限予想(単体的球面とDehn‐Sommerville方程式 巡回凸多面体と上限予想 ほか) 第4章 凸多面体のEhrhart多項式(Ehrhart多項式とEhrhartの相互法則 Hochsterの定理とEhrhart環 ほか) |
内容細目表:
前のページへ