感染拡大防止のため、本を読む前、読んだ後は手を洗いましょう。みなさまのご協力をお願いします。

検索結果書誌詳細

  • 書誌の詳細です。 現在、この資料への予約は 0 件あります。
  • ・予約するときは「予約カートに入れる」ボタンをクリックしてください。予約するには図書館窓口で発行したパスワードが必要です。
    ・「予約カートに入れる」ボタンが出ない書誌には予約できません。
    詳しくは「マイページについて-インターネットで予約するには」をご覧ください。

蔵書情報

この資料の蔵書に関する統計情報です。現在の所蔵数 在庫数 予約数などを確認できます。

所蔵数 1 在庫数 1 予約数 0

書誌情報サマリ

書名

価値の理論 増補版

著者名 白杉庄一郎/著
出版者 ミネルヴァ書房
出版年月 1967
請求記号 N3318/00066/


この資料に対する操作

カートに入れる を押すと この資料を 予約する候補として予約カートに追加します。

いますぐ予約する を押すと 認証後この資料をすぐに予約します。


登録する本棚ログインすると、マイ本棚が利用できます。


資料情報

各蔵書資料に関する詳細情報です。

No. 所蔵館 資料番号 資料種別 配架場所 別置 帯出 状態
1 鶴舞0111615456一般和書2階書庫 在庫 

関連資料

この資料に関連する資料を 同じ著者 出版年 分類 件名 受賞などの切り口でご紹介します。

書誌詳細

この資料の書誌詳細情報です。

請求記号 N3318/00066/
書名 価値の理論 増補版
著者名 白杉庄一郎/著
出版者 ミネルヴァ書房
出版年月 1967
ページ数 348p
大きさ 22cm
分類 331841
書誌種別 一般和書
タイトルコード 1009610057304

要旨 本書の目的は、Pythonエコシステムでより効率的なアプリケーションを記述する手助けをすることにあります。より効率的とは、コードが使うCPUサイクル、ストレージ領域、ネットワーク通信が少なくなることを意味します。本書では、パフォーマンスの問題に総合的なアプローチでのぞみます。ピュアPythonでのコード最適化テクニックについて説明するだけではなく、NumPyやpandasなど広く使われているデータライブラリの効率的な使い方についても検討します。Pythonでは十分なパフォーマンスが得られないケースがあるため、スピードがさらに求められる場合はCythonについても検討します。この総合的なアプローチの一環として、コードの設計にハードウェアが与える影響にも目を向け、現代のコンピュータアーキテクチャがアルゴリズムのパフォーマンスにおよぼす影響を分析します。また、ネットワークアーキテクチャが効率におよぼす影響と、高速なデータ分析でのGPUコンピューティングの使い方も調べます。
目次 1 基礎的なアプローチ(データ処理の効率化が急がれている
組み込み機能のパフォーマンスを最大限に引き出す
並行性、並列性、非同期処理
ハイパフォーマンスなNumPy)
2 ハードウェア(Cythonを使って重要なコードを再実装する
メモリ階層、ストレージ、ネットワーク)
3 現代のデータ処理のためのアプリケーションとライブラリ(ハイパフォーマンスなpandasとApache Arrow
ビッグデータの格納)
4 高度なトピック(GPUコンピューティングを使ったデータ分析
Daskを使ったビッグデータの分析)
付録A 環境のセットアップ
付録B Numbaを使って効率的な低レベルコードを生成する
著者情報 アントン,チアゴ・ロドリゲス
 情報学の工学士号とバイオインフォマティクスの博士号を持つ。現在はバイオテクノロジー分野に従事している。科学計算とデータエンジニアリングのタスクを実行するためにPythonとそのすべてのライブラリを使っている。アルゴリズムの重要な部分を最適化するために、CやRustなどの低水準言語をよく使っている。現在はAmazon AWSベースのインフラで開発を行っているが、キャリアの大部分ではオンプレミスのコンピューティングクラウドと科学クラウドを使っていた。業界での活動に加えて、科学計算の研究では、ケンブリッジ大学とオックスフォード大学でデータ分析のポスドクを務めた経験がある。モンタナ大学では、リサーチサイエンティストとして生物学データを分析するための科学計算インフラ全体を一から開発した(本データはこの書籍が刊行された当時に掲載されていたものです)


内容細目表:

前のページへ

本文はここまでです。


ページの終わりです。